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A system of partial differential equations for a macroscopic description of the transfer in complex elec- 
trochemical systems is proposed. A numerical algorithm for finding an approximate solution is con- 
structed. Computational experiments for copper plating by means of electrolysis are carried out. 

Technological processes that involve electrochemical systems are widely used in nonferrous metallurgy, 
galvanoplastics, the production of chemical current sources, and metal treatment. Their successful design has 
now become inefficient without the development and analysis of physicomathematical models of the processes 
and the carrying out of computational experiments. The current work proposes a physicomathematical model of 
transfer phenomena in an electrochemical medium taking into account the interaction of diffusion fluxes, elec- 
tromagnetic waves, and the Joule heating of the material. 

State-of-the-art technologies are characterized by a pulsed electrical action on the medium. Here, the 
solute concentration has a noticeable effect on the electrical conductivity, and a timing analysis of the physico- 
chemical processes becomes important. Some models of electrochemical systems were examined previously [1- 
5]. Works [1-3] deal with modeling of the electrolysis in a steady-state case disregarding the material diffusion; 
in [4, 5], the models of transfer in electrolytes were considered based on a separate description of the cation 
and anion diffusion but disregarding the heating of the medium. Here, a good many of the parameters for ion 
fluxes are introduced, whose determination procedure is complicated. Moreover, the interactions between the 
cations and anions of the solute and between the solvent molecules are ignored. 

The Joule heating in an electrochemical cell was considered in [6] using the Nemst-Planck equations. 
According to [6], the solution of the problem necessitates the knowledge of a number of additional charac- 
teristics, such as the electric potential in supernatant layers, a horizontal fall of the volume electric potential at 
an electrode, etc. Here, only an approximate solution of the stationary problem is presented. 

The model of the processes in electrochemical systems given below requires a relatively small number 
of input data and represents a higher level of physicomathematical description of phenomena. It is based on the 
method that was first examined in [7, pp. 147-148] and elaborated in [8-10]. 

Model. For modeling the diffusion electric phenomena, we consider an approach that is based on an 
integral description of the diffusion and heating of the medium. A separate description of the diffusion electro- 
chemical processes requires an appropriate "recognizer" for identifying the actual cation and anion fluxes. In 
practice, only observed mass, charge, and heat fluxes are usually recorded. The equation of electric neutrality 
of the medium does not provide independence of a variation in the cation and anion differentials, since in the 
electrolytic solution even in a double electric near-electrode layer their variations are functionally related. 

A macroscopic description of the electromagnetic field in a distributed system must draw on the Max- 
well equations that take the vector form 

~D/Ot + jq = rot H ,  div D = p ,  (1) 
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- 3 B / 3 t  = rot E ,  div B = 0 ,  (2) 

where D = e~)F and B -- g~0H. According to [7, p. 161], the mass, charge, and heat-flux densities are 

q] = - D a V n  + O A ~E,  jq )~ (E - ~,;Vn) Jr = - k V T  

If the medium is homogeneous, its properties can be characterized by the parameters e, g, )~, and DA. T h e  

coefficients X and k in the general case are functions of n and T. 
The elimination of the magnetic-field strength from the system of equations (1) and (2) yields the 

equation for the vector of the electric-field strength 

~2E ~j,, 1 (3) 
:' + ~t° -~t = -- (AE - grad div E) .  

c- 3P 

To allow for the mass transfer, Eq. (3) is supplemented by the diffusion equation 

3 n / 3 t  = - V%. (4) 

The passage of the electric current entails the Joule heating of the medium. On the assumption that it 
is stationary, the heat-conduction equation is of the following form [11, p. 169]: 

3 T  
Cp p ~ = -  Vjz + jq- E .  (5) 

For phenomenologically independent processes, Eqs. (3)-(5) permit a simplification of the analysis of 
the diffusion electric phenomena, since recorded parameters for the observed phenomena are used in lieu of the 
hydrodynamic theory of  ion diffusion. 

With a component-by-component treatment, the obtained system (3)-(5) is a three-dimensional system 
of five equations in five unknowns. A numerical realization of this problem in the presence of mixed deriva- 
tives is very complicated. Many physical processes permit natural assumptions that simplify the initial problem. 

As has been demonstrated in [12, p. 27], for conductors it can be assumed with a sufficient degree of 
certainty that the volume charge density is equal to zero. This is stipulated by the following factors: (1) if the 
initial charge density was equal to zero, it remains equal to zero subsequently and (2) the charge, which was 
initially distributed over the entire conductor, decreases with time at each point exponentially. In all, even poor, 
conductors, the relaxation time is extremely short. Therefore, div D = 0 and, hence, div E = 0. 

On these assumptions, the system of equations (3)-(5) in a one-dimensional case takes the form 

0. a(va ,  . ) 
3t  - Ox I a Ox -- DA (n, T) ~, (n, T) E , (7) 

(8) 

It follows from the Onsager reciprocal relation for kinetic coefficients that cross terms must be equal 
up to a factor [7, pp. 139-140], and therefore we need factual knowledge of the coefficient of ambipolar diffu- 
sion D~, which can be determined from the polarization curve, and also from •, la, and D A. 
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With a one-d imens iona l  model ing,  sys tem (6)-(8) is considered in a certain confined region G = 
[0 < x < l] × [0 < t < ~ ,  where I is the anode-ca thode  spacing and T is the process time. The initial conditions 
are of  the form 

n (x, 0) = n 0 (x) ,  E (x, 0) = cpl (x),  

OE (x, O)/3 t  = q~2 ( x ) ,  T (x, O) = T o ( x ) ,  (9) 

and the boundary conditions are in most cases defined by the fluxes qj, jq, and JT at the boundaries. 
C o m p u t a t i o n a l  Scheme.  To  solve numerically the system of  equations (6)-(8), we use the method of  

finite differences. In the region G, we introduce the spatial and t ime grids of  nodes: 

- {  } o~h = xi = ih , i = 0 , 1  . . . . .  N ,  h = l / N  , 

- ~  = {tj = j'r. , j = O, 1 . . . . . .  li) , "r, = T/ jo  , 

where N and J0 are integral parameters  that determine the calculation accuracy. Let y, v, and w denote approxi- 
mate values at the nodes o)t7 and 03~ of the functions E, n, and T, respectively. Approximating the derivatives 
by their difference analogs, we obtain the following difference scheme for the system of equations (6)-(8): 

(E~/C2) Y t t+  ( / y * / )  (~'~'~) (10) gg0 ~(v,w) -~'a(V,W) z, =v_ ] 2  o . , 

v [ =  "~ "(~"%) (D A (v, w) X (v, w) y)(7~'¢)") [/JA V ~ )x -- . ' 
(11) 

cp pw'2= (k (v, w) w ;  ), + X (v, w) - X a (v, w) v.,: .v- 

For y at fixed i, here Yr = (yj+l _yj) /~ ,  Wt = (yJ--yj-I)/T,, and y? = (Yj+I-yj_O/x, and on the time layer 

J, Yx = (Yi+I--Yi) /h ,  Y2 = (Yi--Yi-l)/h, and .v.~ = ( Y i + I - Y i = l ) / h ;  tJl and o2 are the weight parameters  for t ime 
layers: y ~.~2 = o l v J  +l + (I - Ol - (Y2)Y j + tJz v j - l .  

With a sufficient smoothness of  the functions E = E(x ,  t), n = n(x,  t), and T = T(x, t), the difference 
scheme (10)-(12) approximates differential equations (6)-(8) with the order O(x2+ h 2) at CYl = c~ and with the 
order O(x + h 2) when the values of  the weight factors are at variance. The boundary conditions are approxi- 
mated so that the order of  approximation is consistent with the equations [13, p. 309]. 

An approximate  solution of  the nonlinear system of  equations (10)-(12) with appropriate boundary con- 

ditions is found with the aid of  the following iteration process: 

v (%e~,) (13) (~g/c2) k+l VTt + ggo X (v, w) X A (v, w) V o = - 

vo=t ~ DA v?~ 
k k k k k'~ (~ '%)  

(v, w) X (v, w) y).~ , 
(14) 

%pw~= k(v,w) w7 +k(v,w) -k~(v,w) v; . (15) 
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Fig. 1. Distribution of the relative concentration of salt for various current 
densities: 1) 100, A/me; 2) 200; 3) 300; 4) 400; 5) 500. n/no, dimension- 

less quantity; x, m. 

For k = 0, the values of the grid functions on the preceding time layer are chosen as initial approximations. 
Each iteration reduces to the solution of three systems of linear algebraic equations with a three-diagonal ma- 
trix using the factorization method. 

A theoretical study of the constructed difference scheme leads to extremely cumbersome calculations. 
Here, a priori evaluations do not always adequately reflect the quality of  the proposed algorithm, which, how- 
ever, is characteristic of the investigation of nonlinear difference problems. Therefore, the propounded numeri- 
cal method was tested on model problems by varying the time and space steps and the weight and iteration 
parameters. 

Example  of  Modeling of Diffusion Electric Phenomena  in Electrolytes. Let us consider the process 
of copper plating with an electric current with a constant density J traversing the solution of copper sulfate 
CuSO4.5H20. Copper Cu (99.78%) is used as the anode. It deposits from the solution at the cathode. The 
coefficients of current efficiency for copper are taken to be 100%. The electrochemical equivalent of  copper 
Cu+++2e - is assumed to be ke = 0.6588"10 -6 kg/C [9]. The electrical conductivity ~.(n) of  the copper-plating 
electrolyte as a function of the concentration of copper sulfate in water is presented in [9], and the temperature 
dependence of the coefficients ~. and k is regarded as insignificant. In calculations for CuSO4 we set Da = 
5.10 -l° m2/sec, D~(n) = ~.(n).10 - l l  kg/(A.sec), ~.~(n) = ~.(n).10 --4 V.m2/kg, ~ = 70, and ~t =1. The anode-cath- 

ode spacing is I = 0.05 m. The values of cp, p, and k are taken to be 4.2.103 J/(kg.K), 103 kg/m 3, and 0.6 
W/(m.K), respectively. 

The passage of the electric current through the solution is described by the system of differential equa- 
tions (6)-(8). For a numerical solution, it is supplemented by the boundary conditions, which for the process in 
question are of  the form 

qj = keJ, jq = J .  (16) 

Equations (16) define the mass and charge fluxes that go from the anode into the copper-plating solution at x 
= 0 or arrive at the cathode at x = I. 

The heat transfer as a consequence of electrochemical reactions at the electrodes is taken into account 
by the relations -iT = or(T-To) at the anode and j~ = c~(T-To) at the cathode. The initial conditions have the 
form (9) with ~Pl(x) = ~pz(x) = O, no(x) = const being the initial concentration of copper sulfate, and T0 = const 
being the initial temperature of the process. 

We next present the results of  numerical modeling of the concentration redistribution and unsteady- 
state Joule heating of an electrochemical cell in copper plating for various densities of  the direct current. It is 
seen from Fig. 1 that as early as within a minute after the commencement of copper plating, the electrolyte 
concentration changes noticeably, which, evidently, is the cause of a nonsymmetrical heating of the electro- 

chemical cell. 
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Fig. 2. Diagram of an experimental setup for measuring the temperature in 
a near-cathode layer. 
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Fig. 3. Superheating of a near-cathode region vs. current density: 1) nu- 
merical modeling; 2) experiment. AT, K; I, A/m 2. 

To measure the temperature in the surface layer of the electrolytic solution near the cathode and to 
compare it with calculated results, an experimental setup was developed and manufactured that is diagrammed 
in Fig. 2. Copper anode 4 and cathode 5 were placed in a galvanic bath 9 with sulfuric-acid copper-plating 
electrolyte 6. The cathode of thickness 1 mm had an opening into which temperature pickup 7 was inserted, in 
whose capacity a thermal resistor with a temperature coefficient of resistance of 365 ff2/deg was used. The 
resistance of the thermal resistor was measured via ohmmeter 8. The bath was energized from stabilized dc 
source 1. The current strength in the bath was assigned by variable resistor 3 and measured by ammeter 2. 

The temperature was measured within 60 sec after the energization. Figure 3 presents experimental data 
for the superheating of the near-cathode region as a function of the density of the direct current and the results 
of numerical modeling. Clearly, an increase in the current density leads to a rise in the near-surface tempera- 
ture. The near-surface temperature obtained from solving Eqs.(6)-(8) is 10-15% higher than the temperature 
recorded experimentally. The discrepancy is most likely explained by the errors in determining the coefficients 
and by the assumptions made. In the future, the electrolyte motion and also the heat transfer of  the electrolyte, 
electrodes, and surrounding medium should be taken into account. Nevertheless, the calculated results and the 
experimental data are in good qualitative agreement, which makes it possible to use the proposed approach for 
modeling the transfer in complex electrochemical systems. 

This work was carried out with financial support from the Fund for Fundamental Research (contract 
F98-001) and the State Program for Fundamental Research of the Republic of Belarus (the code is Algorithm 
11). 

N O T A T I O N  

B, magnetic induction, T; Cp, specific heat, J/(kg.K); D, electric displacement, C/me; DA, coefficient of 
molecular diffusion, m2/sec; D~, coefficient of ambipolar diffusion, kg/(A.sec); E, electric field strength, V/m; 
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H, magnetic field strength, A/m; J, current density, A/m2; jq, charge flux density, C/(mLsec); Jr, heat flux den- 
sity, J/(m2.sec); k, thermal conductivity, W/(m.K); ke, electrochemical equivalent, kg/C; n, concentration of 
electrolytic solution, kg/m3; q/, mass flux density, kg/(mLsec); t, time, sec; T, temperature, K; x, distance, m; 
¢x, heat transfer coefficient, W/(me-K); e, dielectric constant; ~0, electric constant, F/m; X, electrical conductiv- 
ity, 1/(fi.m); ~.~, electrical ambipolar conductivity, V-m3/kg; p., magnetic permittivity; ~ ,  magnetic constant, 
H/m; p, density, kg/m3; c, electrodynamic constant. 
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